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6. BACKGROUND ESTIMATION METHODS

Having completed our description of the various SM and non-collision back-

grounds, we now turn our attention to predicting the number of events we expect

from each in the signal region for our final sample. This process is purely based on

data-driven methods and is a multi-step process. We will address each step in turn.

Since the two dominant backgrounds are wrong vertex SM events with an un-

known mean and cosmic ray events we describe their rates one at a time. Section 6.1

provides an overview of how we will use the double Gaussian nature of the timing

distributions in order to perform a data-driven background estimation of the wrong

vertex mean. Futhermore we demonstrate that if we know the mean of the wrong

vertex distribution we are able to predict the number of events expected in the signal

region from SM sources from data-only methods.

Since an important piece of the SM estimate is the determination of the wrong

vertex mean, in Section 6.2 we detail a data-driven method to obtain a good estimate

of the wrong vertex mean. This is done using a second sample of events that has

identical cuts to the signal region, but with one requirement reversed. This allows

the sample to be independent but have similar properties that should allow us to

measure the mean of the wrong vertex distribution. In particular, we select a sample

of events passing all the exclusive γ+�ET events (found in Table 5.5) but failing to

reconstruct a vertex. We call this sample the “no vertex sample”.

This sample is particularly useful because, as we will show, the mean of the t0corr

distribution, < t0corr >, should reproduce the mean of wrong vertex sample, < tWV
corr >,

within small uncertainties. Then, using our six MC control samples and two e+ �ET

control samples we will show that < t0corr >=< tWV
corr > to within 80 ps. This value

will serve as a systematic uncertainty which will be taken into account in the final

estimation of the number of events in the signal region. Finally, in Section 6.3 we

will lay out the final procedure for predicting the expected number of events in the
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signal region from SM sources along with the contribution from cosmic rays for a

final predicited value.

6.1 Overview of Data-Driven Background Method for Collision Backgrounds

We can use the data and an understanding of the shape of the wrong vertex

timing distribution to predict the number of events in the signal region from collision

backgrounds. As we showed in Section 5.6, a sample of collision events can be

described by a double Gaussian timing distribution. Said differently, all the collision

backgrounds are well described by six parameters, namely the mean and RMS of the

two Gaussians (the right and wrong vertex) as well as their normalizations.

While the mean of the wrong vertex may vary sample to sample, as we have seen

in Section 5.6, three out of six of these parameters do not change from sample to

sample and all that is left is to determine the wrong vertex mean and the relative

normalization in order to have a full understanding of the collision backgrounds.

With this in hand we can make a prediction of the number of events in the signal

region.

In Chapter 3 we laid out this argument, with the conclusion summarized in

Equation 3.11, that it is straightforward to predict the number of events in the

signal region (NSR) if you know < tWV
corr > distribution and the number of events in the

control region (NCR). This result is visualized in Figure 3.2 with the double Gaussian

assumption for various wrong vertex means where we ignore the contribution from the

right vertex sample and cosmics. This assumption is typically true for wrong vertex

fractions of ∼10% or greater. The yellow band represents a systematic uncertainty

in the RMS of the wrong vertex of ±0.1 ns which is the one of the systematic

uncertainties we will take into account when predicting the expected number of

events in the signal region from SM sources. It should be noted here that we are

only trying to predict the number of background events from SM contributions in

the signal region. At no point have we used any information about the number of
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events in the signal region nor anything about the shape of the timing distribution

in the signal region except that SM sources will be Gaussian.

We now test the hypothesis put forward in Equation 3.11 by looking at how well

the prediction between the wrong vertex mean and the ratio of events in the signal

and control regions holds in our various MC and data control samples. Figure 6.1

shows the results of the counting experiment for the various MC and e+ �ET data

control samples that pass all the selection requirments in Table 5.5 for photons and

Table 5.2 for electrons. In this case we count the number of events in the signal and

control regions and compute the ratio; note that the error is just the statistical error

on the sample. We then plot this versus the fitted wrong vertex mean when we fit

the various samples in the region -10 ns < tcorr < 10 ns using the double Gaussian

assumption where the mean and RMS of the right vertex are fixed to 0.0 ns and

0.65 ns respectively and the RMS of the wrong vertex is fixed to 2.0 ns as shown in

Figure 5.14. The results of these fits are summarized in Table 6.1.

Sample Observed Wrong Predicted Ratio Observed Ratio
Vertex Mean (ns)

W→ eν MC 0.73 ± 0.19 ns 2.92 ± 1.01 3.70 ± 0.36
γ+Jet MC 0.18 ± 0.13 ns 1.30 ± 0.26 1.30 ± 0.20
Wγ MC 0.14 ± 0.07 ns 1.22 ± 0.14 1.14 ± 0.11
Zγ MC 0.12 ± 0.01 ns 1.20 ± 0.01 1.12 ± 0.02

W→ µν MC 0.29 ± 0.26 ns 1.50 ± 0.70 1.40 ± 0.41
W→ τν MC 0.43 ± 0.26 ns 1.90 ± 0.90 1.70 ± 0.40
e+ �ET Data 0.16 ± 0.05 ns 1.26 ± 0.16 1.32 ± 0.17
e+ �ET Data 0.04 ± 0.05 ns 1.03 ± 0.07 1.06 ± 0.13

(ET > 30 GeV and �ET > 30 GeV)

Table 6.1
Summary of the results shown if Figure 6.1 showing the predicted
and observed ratio of the number of events in the signal region (2 ns
< tcorr < 7 ns) to the number of events in the control region (-7 ns
< tcorr < -2 ns) for our six MC and two e+ �ET control samples.
The observed wrong vertex mean here is measured using a double
Gaussian fit to the data and assuming a right vertex mean = 0.0 ns
and RMS = 0.65 ns as well as a wrong vertex RMS=2.0.



158

Fig. 6.1. Ratio of the number of events observed in the signal region
(2 ns < tcorr < 7 ns) to the number of event observed in the control
region (-7 ns < tcorr < 2 ns) versus the measured wrong vertex mean
for our eight control samples. The black line is not a fit, but rather is
the prediction from the double Gaussian assumption where the right
vertex distribution is fixed and the wrong vertex mean is allowed to
vary. It does an excellent job of predicting the numer of events in the
signal region. Note that in this figure we have measured < tWV

corr >
from a full fit of the control sample (see Figure 5.14), which we cannot
do directly in the real data.

The various sample points clearly follow the expected relationship and demon-

strate that our distributions are well modeled by our double Gaussian assumption.

Note that the line in Figure 6.1 is not a fit, but is simply the prediction from Equa-

tion 3.11. This remarkable result means that for a sample of collision events in the

exclusive γ+ �ET final state, that once we are able to determine the wrong vertex

mean and we count the number of events in the control region from collision sources

we can determine the number of events expected in the signal region. The task of

finding an independent way of determining the wrong vertex mean, and thus mea-

suring the bias present in the sample, is the subject of the next section. We note

that additional studies show that this is true, to within the stated uncertainties even
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if the sample is made of two very different vertex means because the means are small

compared to the overall 2.0 ns RMS [75].

6.2 Measuring the Wrong Vertex Mean for the Sample

The first thing that is important to note, as we now turn our attention to estab-

lishing a way to measure the wrong vertex mean, is that naively we may attempt to

establish the mean of the wrong vertex by simply fitting the full data sample from

-7 ns < tcorr < +2 ns and then extrapolating this fit into the signal region. While

this should work in the limit of having infinite statistics, this method does not work

in our data for three major reasons:

1) Events from cosmics rays constitute a significant fraction of the number of

events in the region from -7 ns < tcorr < -2 ns and thus may distort the wrong

vertex distribution in this area.

2) In the region from -2 ns < tcorr < 2 ns events from the right vertex dominate

thus making it difficult to measure the mean of the wrong vertex in this region.

3) All of these problems are compounded as the wrong vertex mean becomes

larger. Said differently, as the wrong vertex mean gets larger the distribution

in the control region (-7 ns < tcorr < -2 ns) only gives a smaller and smaller

fraction of the events from which to estimate the mean.

With these problems in mind, we consider an orthogonal set of events that allows

us to measure < tWV
corr >. For such a sample we look to the events that pass all of our

exclusive γ+�ET requirements (outlined in Table 5.5) but do not have a reconstructed

SpaceTime vertex. As illustrated in Figure 6.2, we refer to this sample as the “no

vertex” sample. We expect this sample to be very similar to the wrong vertex events

for a number of reasons. The first is that in wrong vertex events they may or may

not have had their true vertex reconstructed. We note that in our MC backgrounds
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samples where we selected the wrong vertex, the right vertex was only available to be

selected a small fraction (∼50%) of the time. Furthermore, we expect the topology

of the events where we select a wrong vertex to be similar to those with no vertex.

We will check this assumption in more detail after we describe more about the timing

we use for no vertex events.

Fig. 6.2. This figure shows the creation of a γ+ �ET event where the
primary collision does not produce a reconstructed vertex. We use a
sample of events with this topology because their timing distribution,
t0corr, is dominated by the topology of the SM events where the wrong
vertex is selected. If no good SpaceTime vertex is reconstructed,
but the event passes all the other exclusive γ+�ET event selection
requirements there is a clear relationship between < t0corr > and
< tWV

corr >.

If no good SpaceTime vertex is reconstructed, but the event passes all the other

exclusive γ+ �ET event selection requirements we can still construct t0corr where we

assume the initial time and position was t0 = 0 ns and z = 0 cm respectively. This is

a reasonable assumption on average since this is the most common place for collisions

to occur. From this point, we can see why moving to E0
T and �E0

T , as was described in

Section 5.5.1, was doubly advantageous. In addition to reducing the bias in the tWV
corr

distribution, we can select this sample in exactly the same way as the main sample

regardless of whether there is a vertex reconstructed in the event.
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While we expect this sample to be dominated by cosmic ray backgrounds, the

events from a collision which had no reconstructed vertex should have the same

underlying physics and topology and thus the same timing bias as the wrong vertex

distribution. We can see this by rewriting Equation 1.8 for t0corr

t0corr = tf − t0 −
| �xf − �x0|

c
(6.1)

where t0 and x0 are measured at the center of the detector. However, as we saw in

Equation 5.2, we can rewrite tf as

tf = tRV + TOFRV (6.2)

Plugging this in and setting
�xf− �x0

c
= TOF0 and t0 =0 ns we find

t0corr = TOFRV + tRV − TOF0 (6.3)

where TOF0 is the predicted time of flight from z=0 cm to the calorimeter position.

Since many of these terms are the same as in the tWV
corr equation described in Equation

5.3 we can plug this relation in to find

tWV
corr = t0corr − t0WV + (TOF0 − TOFWV ). (6.4)

This relationship is useful because what we are after is < tWV
corr >. Since the

three terms in Equation 6.4 are not correlated with one another, or are small, we

can consider each term independently in terms of its contribution to < tWV
corr >. We

can directly measure < t0corr > distribution from the data. The t0WV distribution

is zero purely from beam related parameters with a mean of 0 ns and an RMS of

1.28 ns as shown in Figure 3.10. Finally, we note that TOF0 − TOFWV term is

fairly narrow and has a mean of ∼0 ns for geometric reasons. This is true because

wrong vertices are produced independently of the physics of the right vertex, so
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TOF0 − TOFWV is largely process independent. A representation of this can be

seen on the LHS of Figure 6.3. We note that the distance from the beam line to

the calorimeter is much larger (∼184 cm) than the scale of the variation in the

collision distribution (RMS of ∼28 cm shown in Section 2.4.5). This fact implies

that TOF0−TOFWV should be small on average. The RHS of Figure 6.3 shows this

quantitatively in a series of toy pseudo-experiments where we calculate the time-of-

flight of the wrong vertex, TOFWV , and the time-of-flight for the no vertex, TOF0,

distributions. Here we generate verticies according to the z and t parameters of the

Tevatron beam in Table 2.1 and assume sa uniform arrival in the CES z position. We

see that < TOF0 − TOFWV > is consistent with zero to less than 40 ps. With this

understanding we see why, to a good degree of approximation, < tWV
corr >=< t0corr >.

Fig. 6.3. (LHS) An illustration showing the various components of
the time-of-flight components of the tWV

corr coming from the difference
relative to the center of the detector (TOF0) and the time-of-flight
difference relative to a wrong vertex (TOFWV ). (RHS) The results
of toy pseudo-experiments where verticies are generated according to
the z and t parameters of the Tevatron and we calculate the time-of-
flight of the wrong vertex, TOFWV , and the time-of-flight for the no
vertex, TOF0 demonstrating that < TOF0 − TOFWV >= 0 to less
than 40 ps.

To test this hypothesis we use our six MC control samples as well as our two

e+ �ET data control samples. We select events using Tables 5.5 for photons and 5.2

for electrons but this time require these samples to explicitly fail the good SpaceTime
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vertex selection in order to construct the no vertex timing distribution. We examine

t0corr for each sample, shown in Figure 6.4, and fit a Gaussian from -5 ns < t0corr <

3 ns allowing the mean to vary and find the best fit parameter while fixing the RMS=

1.6 ns. We pick the range for the Gaussian fit to start at -5 ns in order to avoid

any potential contamination from beam halo events which we expect to begin to be

present at t0corr <-5 ns, as described in Section 4.3. We only fit out to t0corr = 3 ns in

order to avoid any potential contamination from signal like events that we expect to

see above 3 ns, as described in Section 1.5. We choose the RMS= 1.6 ns since this is

the expected t0corr timing resolution as described in Section 5.1. We also note that for

the control e+ �ET samples from data we include a fit to the cosmics by extrapolating

to the cosmics region 20 ns < tcorr < 80 ns. The results for all eight are are shown

in Figure 6.4.

To test the assumption that the t0corr distribution is well modeled by a Gaussian

with an RMS= 1.6 ns we do a second fit with a Gaussian in the range -5 ns < t0corr <

3 ns and allow both the mean and RMS to vary and find the best fit parameter for

each sample. The results are summarized Table 6.2 and can be seen graphically in

Figure 6.5. We find that, as expected, the mean varies but is again independent of

RMS. Similarly, we note that the data points all fall within the yellow band (± 10%

the nominal RMS) for a wide range of < t0corr >.

Having established the assumption that the no vertex timing distribution is ac-

curately described by a Gaussian with an RMS of 1.6 ns for our MC backgrounds

and e+ �ET data, we now look to the comparison of < tWV
corr > (which we can measure

for our control samples since we know the true vertex, but not the real data) versus

< t0corr > (which we can measure with real data). In Figure 6.6, and summarized

in Table 6.3, we compare the two measured timing means. We quickly notice that

all of the points lie on the line at 45 degrees (where the two measured timing means

equal one another). The mean of the wrong vertex and the mean of the no vertex
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Fig. 6.4. The t0corr distribution for the no vertex samples from the
six MC control samples as well as the two control e+�ET sample from
data. The fit is for a Gaussian fit from -5 ns < t0corr < 3 ns with a
fixed RMS = 1.6 ns in order to estimate to measure < t0corr > which
is a good estimate of < tWV

corr >.
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Fig. 6.5. A plot showing the relationship between the RMS of the
t0corr distribution for no vertex events versus < t0corr > for our MC and
e+Met data control samples. This demonstrates that the assumption
that the no vertex corrected time distribution is well modeled by a
Gaussian with an RMS of 1.6±0.08 ns for the various MC back-
grounds in addition to e+ �ET data samples is a good one. The no
vertex mean and RMS is found by fitting the no vertex corrected
time (t0corr) distribution with a single Gaussian from -5 ns < t0corr <
3 ns where the Gaussian RMS and mean are allowed to vary to find
the best fit.

distribution are thus shown to be nearly equivalent values for our six MC control

samples as the two control e+ �ET data samples.

We note that although the two are always equal within uncertainties, the two

measurements are not always identical, so for this reason we conservatively overes-

timate any systematic difference between the wrong vertex mean and the no vertex

mean to be 100 picoseconds.
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Sample No Vertex Mean (ns) No Vertex RMS (ns)

W→ eν MC 0.61 ± 0.20 ns 1.68 ± 0.14 ns
γ+Jet MC 0.16 ± 0.11 ns 1.58 ± 0.06 ns
Zγ MC 0.07 ± 0.05 ns 1.55 ± 0.05 ns

W→ µν MC 0.27 ± 0.20 ns 1.64 ± 0.17 ns
W→ τν MC 0.31 ± 0.19 ns 1.56 ± 0.19 ns

Wγ MC 0.13 ± 0.06 ns 1.50 ± 0.05 ns
e+ �ET Data 0.23 ± 0.08 ns 1.66 ± 0.09 ns
e+ �ET Data 0.04 ± 0.05 ns 1.69 ± 0.05 ns

(ET& �ET ) > 30 GeV

Table 6.2
Summary of the results in Figure 6.5 which plots the relationship
between the mean and RMS of the t0corr distributions for the six MC
and two e+ �ET control datasets for sets of events where we require
the events to pass all the requirements in Tables 5.5 and 5.2 but
have no SpaceTime vertex reconstructed. The < t0corr > and RMS is
found by fitting the no vertex corrected time (t0corr) distribution with
a single Gaussian from -5 ns < t0corr < 3 ns where the Gaussian RMS
and mean are allowed to vary to find the best fit.

With this assumption, we can rewrite Equation 3.11 using µNV =< t0corr > and

µWV =< tWV
corr > and determine the number of events in the signal region from

collision backgrounds using the relation:

NSM
signal = R(µWV = µNV ) ·NSM

control (6.5)

and take the systematics on R due to the uncertainty between the relation µWV =

µNV and the uncertainty of the RMS of the wrong vertex Gaussian.

To test how well this relation predicts the number of events in the signal region

with our eight control samples we show the results in Figure 6.7 as if they were real

data. By comparing the prediction we see that the measured value of < t0corr >

does an excellent job of predicting the ratio of events in the sample of events with
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Fig. 6.6. The correlation between < tWV
corr > and < t0corr > for our

MC and e+ �ET data control samples. One method is taken from
Table 5.6 and is where we measure the WV directly from a full fit to
the data, which is only possible in MC, and one from the no-vertex
sample which is available in data. Note that the two agree to a high
degree of precision. This fact allows us to predict the wrong vertex
mean for a given sample by measuring a sample of events that pass
all the other selection requirements but fail to reconstruct a vertex.

a good vertex. Again, the black line is a prediction based on the measure < t0corr >

and not a fit. A comparison of the the measured and observed ratio is given in

Table 6.4. Thus, we have confirmed that our method that uses an independent

sample, the “no vertex” sample, in conjunction with the number of events in the

control region gives us a data-driven estimate of the number of events in the signal

region for SM backgrounds. The uncertainty, as we will see is dominated by the

statistical uncertainty of the number of events from collision in the no vertex sample

to determine < t0corr >.

In the next section we formalize the background estimation procedure in the

exclusive γdelayed+�ET final state utilizing the fact that we can predict the wrong
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Sample Wrong Vertex Mean (ns) No Vertex Mean (ns)

W→ eν MC 0.73 ± 0.19 ns 0.68 ± 0.16
γ+Jet MC 0.18 ± 0.13 ns 0.16 ± 0.10
Wγ MC 0.14 ± 0.07 ns 0.14 ± 0.03
Zγ MC 0.12 ± 0.01 ns 0.06 ± 0.01

W→ µν MC 0.29 ± 0.26 ns 0.25 ± 0.19
W→ τν MC 0.43 ± 0.26 ns 0.38 ± 0.17
e+ �ET Data 0.16 ± 0.05 ns 0.23 ± 0.05
e+ �ET Data 0.04 ± 0.05 ns 0.02 ± 0.01

(ET > 30 GeV and �ET > 30 GeV)

Table 6.3
Summary of the two different measurements of the wrong vertex
mean using the six MC backgrounds control samples, selected us-
ing Table 5.5, and the two e+ �ET data control samples, selected
using Table 5.2. Here we obtain the wrong vertex mean by fitting
the corrected time (tcorr) distribution with a double Gaussian func-
tion from -10 ns < tcorr < 10 ns where the right vertex Gaussian
mean = 0.0 ns and RMS = 0.65 ns and the wrong vertex Gaussian
RMS = 2.0 ns and the mean is allowed to vary to find the best fit.
The no vertex mean is found by fitting the no vertex corrected time
(t0corr) distribution with a single Gaussian from -5 ns < t0corr < 3 ns
where the Gaussian RMS = 1.6 ns and the mean is allowed to vary
to find the best fit. These results are plotted in Figure 6.6.

vertex mean from the “no vertex” sample, but at the same time take into account

the contributions from cosmic ray background sources.

6.3 The Combined Background Estimation Procedure

To briefly recap, in Section 6.1 we demonstrated how the double Gaussian nature

of the corrected time distribution makes it possible to predict the number of events

expected in the signal region (2 ns < tcorr < 7 ns) from SM sources if we know

the mean of the wrong vertex distribution. In Section 6.2 we showed how we can

estimate the wrong vertex mean using a sample of events that pass all our event
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Fig. 6.7. The ratio of the number of events observed in the signal
region (2 ns < tcorr < 7 ns) to the number of event observed in the
control region (-7 ns < tcorr < -2 ns) versus the observed “no ver-
tex” mean for the eight MC and data control samples. This shows
that using the double Gaussian assumption and measuring the mean
of the “no vertex” distribution we can accurately predict the num-
ber of events in the signal region for all our control samples within
uncertainties.

selection requirements but fail to reconstruct a vertex and measure < t0corr >. In

Section 4.2 we outlined how we estimate the cosmic ray rate in the signal region by

measuring the number of events in the cosmics region (20 ns < tcorr < 80 ns) where

we do not expect to see any collision sources which we call this the “cosmics region”.

We now combine these two estimate and lay out the final procedure by which

we will use the information from the cosmics region, the mean of the no vertex

distribution, and the number of events observed in the control region (-7 ns < tcorr <

-2 ns) to predict the number of events expected in the signal region (2 ns < tcorr <

7 ns) from SM sources. We procedure is as follows:
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Sample Observed No Predicted Ratio Observed Ratio
Vertex Mean (ns)

W→ eν MC 0.68 ± 0.16 ns 2.74 ± 0.76 3.70 ± 0.36
γ+Jet MC 0.16 ± 0.10 ns 1.27 ± 0.20 1.30 ± 0.20
Wγ MC 0.14 ± 0.03 ns 1.23 ± 0.05 1.14 ± 0.11
Zγ MC 0.06 ± 0.01 ns 1.09 ± 0.02 1.12 ± 0.02

W→ µν MC 0.25 ± 0.19 ns 1.46 ± 0.48 1.40 ± 0.41
W→ τν MC 0.38 ± 0.17 ns 1.77 ± 0.51 1.70 ± 0.40
e+ �ET Data 0.23 ± 0.05 ns 1.39 ± 0.31 1.32 ± 0.17
e+ �ET Data 0.02 ± 0.01 ns 1.03 ± 0.07 1.06 ± 0.13

(ET > 30 GeV and �ET > 30 GeV)

Table 6.4
Summary of the results shown in Figure 6.7 of our method for the
SM MC samples and our e+ �ET data “no vertex”control samples.
We find the predicted ratio using that measured mean as well as the
observed ratio of the number of events in the signal region to the
control region agree to within errors.

• Select events for the exclusive γ+�ET final state:

All events are selected using the criteria in Table 5.5. We sort events into events

that have a good SpaceTime vertex and events with no good SpaceTime vertex.

From this bifurcation we construct the corrected time distributions for each.

For the events having a good SpaceTime vertex we construct the tcorr variable

defined in Equation 1.8. Events that do not have a good SpaceTime vertex are

part of the “no vertex” sample and we construct the t0corr timing distribution

defined in Equation 6.4.

• Estimate the cosmic ray event rate:

Since events from cosmic rays represent a significant contribution for both

the good vertex and no vertex sample, we must estimate their contamination

to the regions under consideration. Thus, for both the tcorr and t0corr timing

distributions, we look at the events in the timing region from 20 ns < tcorr <

80 ns and 20 ns < t0corr < 80 ns and fit a straight line in this region. This fitted
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rate gives us an estimate of the rate of cosmics per nanosecond present in both

the no vertex and good vertex samples (which is expected to be different for

each). This is then straightforwardly extrapolated to the number of events in

the signal region using Equation 4.3 and a similar relation for the no vertex

sample.

• Measure the mean of the “no vertex” timing distribution:

Using the t0corr distribution, we fit a straight line fixed at the cosmics rate plus

a Gaussian with an RMS = 1.6 ns from -5 ns < t0corr < 3 ns and measure the

mean of this distribution and the uncertainty of the fit.

• Predict the number of background events in the Signal Region:

Finally, using the mean of the no vertex distribution, the measured cosmics rate

for the good vertex sample, and the number of events observed in the control

regions in the good vertex sample we can uniquely calculate the number of

events expected from SM sources using Equation 6.5. With this prediction we

can sum the number of events from both cosmics and wrong vertex events in

the signal region as well as determine the uncertainty on this estimation.

With the data-driven background procedure now laid out, we now turn to the

results of the search in the exclusive γ + �ET final state and the quantification of

the associated errors with our prediction. Ultimately, the difference between the

predicted number of events in the signal region and the observed number will indicate

whether we have evidence for new physics in the exclusive γdelayed + �ET final state.


